Mol. Cells
Published online April 21, 2022
© The Korean Society for Molecular and Cellular Biology
Correspondence to : hjkoh@dau.ac.kr
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.
DJ-1 is one of the causative genes of early-onset familial Parkinson’s disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.
Keywords DJ-1, Drosophila, oxidative stress, Parkinson’s disease, pyruvate dehydrogenase kinase
Mol. Cells
Published online April 21, 2022
Copyright © The Korean Society for Molecular and Cellular Biology.
Yoonjeong Lee1,2,6 , Jaehyeon Kim1,3,6
, Hyunjin Kim1,2
, Ji Eun Han1,3
, Sohee Kim1,3
, Kyong-hwa Kang1,4
, Donghoon Kim1,2,3,4
, Jong-Min Kim5
, and Hyongjong Koh1,2,3,4,*
1Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Korea, 2Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan 49201, Korea, 3Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan 49201, Korea, 4Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan 49201, Korea, 5Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan 49201, Korea, 6These authors contributed equally to this work.
Correspondence to:hjkoh@dau.ac.kr
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.
DJ-1 is one of the causative genes of early-onset familial Parkinson’s disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.
Keywords: DJ-1, Drosophila, oxidative stress, Parkinson’s disease, pyruvate dehydrogenase kinase
Ji Ae Lee, Young-Won Kwon, Hye Ri Kim, Nari Shin, Hyo Jin Son, Chan Seong Cheong, Dong Jin Kim, and Onyou Hwang
Mol. Cells 2022; 45(3): 134-147 https://doi.org/10.14348/molcells.2021.0074Jangham Jung, Eunhee Kim, and Myungchull Rhee
Mol. Cells 2021; 44(4): 233-244 https://doi.org/10.14348/molcells.2021.0005Ki-Hong Jang, Yeseong Hwang, and Eunhee Kim
Mol. Cells 2020; 43(7): 632-644 https://doi.org/10.14348/molcells.2020.0078